Local spectral anisotropy is a valid cue for figure–ground organization in natural scenes
نویسندگان
چکیده
An important step in the process of understanding visual scenes is its organization in different perceptual objects which requires figure-ground segregation. The determination of which side of an occlusion boundary is figure (closer to the observer) and which is ground (further away from the observer) is made through a combination of global cues, like convexity, and local cues, like T-junctions. We here focus on a novel set of local cues in the intensity patterns along occlusion boundaries which we show to differ between figure and ground. Image patches are extracted from natural scenes from two standard image sets along the boundaries of objects and spectral analysis is performed separately on figure and ground. On the figure side, oriented spectral power orthogonal to the occlusion boundary significantly exceeds that parallel to the boundary. This "spectral anisotropy" is present only for higher spatial frequencies, and absent on the ground side. The difference in spectral anisotropy between the two sides of an occlusion border predicts which is the figure and which the background with an accuracy exceeding 60% per patch. Spectral anisotropy of close-by locations along the boundary co-varies but is largely independent over larger distances which allows to combine results from different image regions. Given the low cost of this strictly local computation, we propose that spectral anisotropy along occlusion boundaries is a valuable cue for figure-ground segregation. A data base of images and extracted patches labeled for figure and ground is made freely available.
منابع مشابه
Figure-Ground Organization in Visual Cortex for Natural Scenes
Figure-ground organization and border-ownership assignment are essential for understanding natural scenes. It has been shown that many neurons in the macaque visual cortex signal border-ownership in displays of simple geometric shapes such as squares, but how well these neurons resolve border-ownership in natural scenes is not known. We studied area V2 neurons in behaving macaques with static i...
متن کاملLocal figure-ground cues are valid for natural images.
Figure-ground organization refers to the visual perception that a contour separating two regions belongs to one of the regions. Recent studies have found neural correlates of figure-ground assignment in V2 as early as 10-25 ms after response onset, providing strong support for the role of local bottom-up processing. How much information about figure-ground assignment is available from locally c...
متن کاملFigure/Ground Assignment in Natural Images
Figure/ground assignment is a key step in perceptual organization which assigns contours to one of the two abutting regions, providing information about occlusion and allowing high-level processing to focus on non-accidental shapes of figural regions. In this paper, we develop a computational model for figure/ground assignment in complex natural scenes. We utilize a large dataset of images anno...
متن کاملNeural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence
To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency, space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to temporal coherence-the coincidence of sound elements in and across time-is also critical for the perceptual organization of acoustic scenes. Here, we exa...
متن کاملEstimating 3D tilt from local image cues in natural scenes
Estimating three-dimensional (3D) surface orientation (slant and tilt) is an important first step toward estimating 3D shape. Here, we examine how three local image cues from the same location (disparity gradient, luminance gradient, and dominant texture orientation) should be combined to estimate 3D tilt in natural scenes. We collected a database of natural stereoscopic images with precisely c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Vision Research
دوره 103 شماره
صفحات -
تاریخ انتشار 2014